Analytical and numerical solutions of generalized Burgers’ equation via Buckingham’s Pi-theorem
نویسندگان
چکیده
A generalized dimensional analysis performed by using Buckingham’s Pi-theorem for the generalized Burgers’ equation is presented. The application of the Buckingham Pi-theorem is used to reduce the governing partial differential equation with the boundary and initial conditions to an ordinary differential equation with appropriate corresponding conditions. By using a scaling invariant we simplify the similarity solutions, which are discussed for a specific choice of boundary conditions, and yield analytical solutions, which are in closed form. Also, using extended one-step methods of order five we solve the final ordinary differential equations. This criterion for solvability involves converting the boundary value problem to an initial value problem. PACS Nos.: 02.60.Lj, 47.27.Jv Résumé : Nous présentons une analyse à dimension généralisée pour l’équation généralisée de Burger en utilisant le théorème Pi de Buckingham. Ce théorème permet de réduire l’équation différentielle ordinaire gouvernante avec ses conditions limites et initiales à une équation différentielle ordinaire avec conditions appropriées. En utilisant l’invariance d’échelle, nous simplifions les solutions de similarité qui sont étudiées pour un choix de conditions limites et qui nous donnent des solutions analytiques fermées. De plus, nous solutionnons l’équation différentielle ordinaire d’ordre cinq à l’aide d’une méthode étendue à une étape. Le critère d’existence de cette solution implique la conversion d’un problème aux valeurs limites à un problème avec conditions initiales. [Traduit par la Rédaction]
منابع مشابه
Electro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملThe modified simplest equation method and its application
In this paper, the modified simplest equation method is successfully implemented to find travelling wave solutions of the generalized forms $B(n,1)$ and $B(-n,1)$ of Burgers equation. This method is direct, effective and easy to calculate, and it is a powerful mathematical tool for obtaining exact travelling wave solutions of the generalized forms $B(n,1)$ and $B(-n,1)$ of Burgers equation and ...
متن کاملAn Analytical and Semi-analytical Study of the Oscillating Flow of Generalized Burgers’ Fluid through a Circular Porous Medium
Unsteady oscillatory flow of generalized Burgers’ fluid in a circular channel tube in the porous medium is investigated under the influence of time-dependent trapezoidal pressure gradient given by an infinite Fourier series. An exact analytical expression for the solution for the fluid velocity and the shear stress are recovered by using the similarity arguments together with the integral trans...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کامل